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ABSTRACT

Some early analog voltage-controlled amplifiers (VCAs) utilized
semiconductor diodes as a variable-gain element. Diode-based
VCAs exhibit a unique sound quality, with distortion dependent
both on signal level and gain control. In this work, we examine the
behavior of a simplified circuit for a diode-based VCA and propose
a nonlinear, explicit, stateless digital model. This approach avoids
traditional iterative algorithms, which can be computationally in-
tensive. The resulting digital model retains the sonic characteristics
of the analog model and is suitable for real-time simulation. We
present an analysis of the gain characteristics and harmonic dis-
tortion produced by this model, as well as practical guidance for
implementation. We apply this approach to a set of alternative
analog topologies and introduce a family of digital VCA models
based on fixed nonlinearities with variable operating points.

1. INTRODUCTION

Voltage-controlled amplifiers (VCAs) are a fundamental building
block of audio processing and synthesis. They are used in a wide
array of applications, such as compressors, expanders, limiters,
synthesizer envelopes, and dynamic filters. VCAs are also used to
perform mixing, amplitude modulation, and gating [1].

VCAs can be trivial to implement in the digital domain, requir-
ing only a single multiplication at their simplest. Analog VCAs
are significantly more complex, and have been implemented in
many ways as technology has progressed, using components such
as LDRs, vacuum tubes, semiconductor diodes, BJTs, JFETs, and
OTAs [2, 3]. Each topology creates a unique sound, which is
influenced by distortion characteristics, control linearity, and time-
dependent effects.

Some of the earliest solid-state compressors and limiters, in-
troduced in the 1960s, used semiconductor diodes as their primary
variable-gain elements; notable examples include the Siemens U273
Limiter [4], the Dolby Audio Noise Reduction System A301 [5],
the Neve 2254/E Limiter/Compressor [6], and the Neve 33609/J
Limiter/Compressor [7]. With a few exceptions, diode-based VCAs
are nearly non-existent in modern products, likely owing to their
relatively high signal distortion, need for carefully matched compo-
nents, temperature dependence, and higher noise floor.

While the designers of historic analog systems sought to min-
imize distortion, today the nonlinearities and quirks present in
analog hardware are appreciated for their musical effects [8], and
work in virtual analog modelling is widely undertaken. Though
diode simulations have been employed in digital effects such as
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Figure 1: Analog circuit prototype for a diode-resistor VCA.

distortion [9, 10, 11, 12, 13] and ring modulation [14, 15], a careful
review of prior literature did not reveal any existing digital models
of diode-based VCAs. In this work, we propose a family of gener-
alized models based on different diode-based VCA topologies.

2. ANALOG CIRCUIT PROTOTYPE

Fig. 1 depicts the circuit that will serve as a prototype for our
development of a digital diode VCA model: Vin summed with Vctrl

is connected to ground through a forward-biased diode and resistor
in series, and Vout is taken across the resistor. Though this circuit
omits many support components required in a practical diode-based
VCA (e.g., buffering, AC coupling, and gain staging), it is sufficient
to develop a digital model.

The circuit forms a voltage divider in which the diode behaves
like a voltage-dependent resistor. Current flow through the circuit
is governed by the Shockley diode equation and Kirchhoff’s current
law, and obeys the equation

IS exp

(
Vin + Vctrl − Vout

ηVT

)
− IS − Vout

R
= 0 , (1)

where IS is the diode’s reverse-bias saturation current, η is the
diode’s ideality factor, and VT is the thermal voltage. The model in
(1) is an approximation, and excludes some properties of physical
semiconductor diodes, namely: internal resistance, inductance, and
capacitance*; noise†; and the reverse-recovery effect [16]. As these
effects are largely below the threshold of audibility, we ignore
them for the purposes of analysis. Reverse breakdown is also
disregarded, as it typically occurs at voltages greater than those
present in audio processing equipment. All models and analysis
assume a fixed temperature, and the effects of temperature variation
are not modelled.

*Internal capacitance somewhat increases the gain of high-frequency
components when the overall gain is low; if desired, this effect can be
simulated in a digital model with a variable high-boost filter.

†Likewise, simulated noise dependent on signal level and gain can be
applied to the output to approximate this effect.
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Figure 2: DC signal sweep (solid) and small-signal gain (dashed)
for the diode-resistor VCA circuit in Fig. 1, with R = 1kΩ and
IS = 2.520 nA, η = 1.755, and VT = 25.85mV corresponding
to a 1N4148 diode at 300K.

As illustrated in Fig. 2, the circuit in Fig. 1 behaves like a
soft rectifier with regard to Vin + Vctrl, broadly permitting voltage
to flow in the forward direction while blocking it in the reverse
direction. The width of the transition region between conduction
and blocking is proportional to ηVT.

We decompose the input voltage into two components: the
input signal Vin and the control voltage Vctrl. The input signal
is assumed to have no DC component, and its magnitude is kept
relatively small (nominally below 50mVPP in commercial prod-
ucts). The control voltage sets the circuit’s DC operating point
and ultimately determines the gain applied to the input signal. As
Vctrl → +∞V, the diode behaves like a short circuit and the
gain approaches unity. Conversely, as Vctrl → −∞V, the diode
behaves like an open circuit and the gain approaches zero.

The input signal Vin is predominantly affected by the circuit’s
small-signal characteristics. The small-signal gain may be com-
puted exactly by implicitly differentiating (1) and performing alge-
braic manipulation to obtain

∂Vout

∂Vin
=

Vout + ISR

Vout + ISR+ ηVT
, (2)

also shown in Fig. 2. The small-signal gain is a function of the
circuit’s DC operating point; it is this property that we will exploit
to create a variable gain element. Note that a DC offset is present at
the output due to Vctrl. This offset is referred to as control voltage
feedthrough, and typically removed using AC coupling.

The usual iterative algorithms may be used to solve for Vout

in the digital domain; however, these methods are often computa-
tionally intensive. Instead, we seek an explicit solution. This also
makes translation to a DSP model more straightforward. An exact
analytical expression for the output voltage may be obtained in
terms of the Lambert W function [17] using the method described
in [18]. Because ISR/ηVT ≥ 0, the argument of W () is positive
and thus there is exactly one solution, given by the principal branch

Vout = ηVT W0

(
ISR

ηVT
exp

(
Vin + Vctrl + ISR

ηVT

))
− ISR .

(3)

3. DSP MODEL

Because (3) does not contain any dynamic terms, we may transform
it into a stateless DSP model by a series of substitutions.

To begin, we replace W0() with the Wright omega function [19],
defined here as ω(u) = W0(e

u), to obtain

Vout = ηVT ω

(
Vin + Vctrl + ISR

ηVT
+ ln

(
ISR

ηVT

))
− ISR ,

which we further simplify using the identity ω−1(u) = u+ lnu to

Vout = ηVT ω

(
Vin + Vctrl

ηVT
+ ω−1

(
ISR

ηVT

))
− ISR . (4)

The Wright omega function is preferable here for several reasons:
it is defined over the entire real line, has a number of convenient
algebraic properties, is more efficient and stable under numeri-
cal evaluation for large values, and can be approximated more
simply. In particular, the function can be directly mapped onto a
diode-resistor VCA’s voltage transfer function using only affine
transformations. A great number of published algorithms and ap-
proximations, including [9, 10, 14, 15, 20], have been proposed for
evaluating the Lambert W and Wright omega functions, each of
which trade performance for accuracy to varying degrees. Addition-
ally, the omega function is monotonic, which makes it well-suited
to tabulation. When preparing this work, we used [9, (12)] for
real-time evaluation and [20] for plots and offline processing.

Next, we introduce two control-rate parameters that divorce the
model from physical component values and provide a more natural
parameterization. The sharpness parameter α := (ηVT)

−1 deter-
mines the transition region sharpness and affects the model’s degree
of nonlinearity. In an analog circuit, α is necessarily positive; in
the digital domain, we may permit α ∈ R without issue. The
bias parameter β := Vctrl/ηVT + ω−1(ISR/ηVT) sets the model’s
operating point. Similarly, we allow β ∈ R. This particular expres-
sion was chosen to decouple the bias and sharpness parameters. In
Sec. 3.1 we will discuss the exact relationship between β and the
small-signal gain. To avoid discontinuities, α and β should ideally
be changed only when x crosses zero.

We also rename x := Vin and y := Vout. For the sake of
later analysis, we will assume that the input signal x has no DC
component. After substitution, we arrive at

y(x) = α−1ω(αx+ β)− α−1ω

(
β − Vctrl

ηVT

)
.

Lastly, we alter the model by removing the −Vctrl/ηVT term,
eliminating the DC offset such that y(0) = 0. Removing this term
also minimizes audible “thumping” that can be produced when β
is rapidly modulated; we will discuss this phenomenon in further
detail in Sec. 4.3. This alteration does not affect the distortion
characteristics of the model with regard to the input signal. We now
arrive at the expression

y(x) = α−1ω(αx+ β)− α−1ω(β) , (5)

which is shown in Fig. 3 for various values of β.
Compared to traditional iterative solvers, (5) is computationally

efficient. It requires only two additions, two multiplications, and
one ω() evaluation per sample for constant parameters; therefore
it may readily be evaluated in real-time on modern computers and
embedded processors.
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Figure 3: Input signal sweeps of (5) for β values corresponding
to small-signal gains of approximately 1%, 25%, 50%, 75%, and
99%. Dashed lines indicate linear functions with equivalent gain.

3.1. Gain Control

In order to make (5) usable as a VCA, we must parameterize β in
terms of the model’s gain. We compute the small-signal gain A for
vanishingly small input signals,

A := lim
α→0

∂y

∂x
= ω′(β) =

ω(β)

ω(β) + 1
. (6)

A is wholly dependent on the bias parameter β: as β → +∞, A
approaches unity; likewise, as β → −∞, the small-signal gain
approaches zero. By inverting (6), we arrive at the gain control
parameterization,

β(A) = ω−1

(
A

1−A

)
, (7)

which is defined on the open interval A ∈ (0, 1) and may be eval-
uated using ω−1(u) = u + lnu. Modulating β is comparatively
expensive, requiring two additions, one division, and one ln () eval-
uation. Some effort may be saved when computing the −α−1ω(β)
term in (5) by observing that ω(β) = A/(1 − A). Tabulation may
also be used to compute (7).

The results in (6) and (7) make use of ω′(u) = ω(u)/(ω(u) + 1);
it is worth noting that not all approximations of the Wright omega
function obey this identity exactly, and may thus require different
gain control parameterizations.

3.2. Comparison to SPICE Simulations

When parameters are matched, (5) produces a response nearly
indistinguishable (when corrected for DC offset) from a SPICE
simulation of the circuit in Fig. 1, as shown in Fig. 4. The region
of greatest relative error occurs when gain is near zero, resulting
in diminished impact. As a static system, the model’s accuracy is
independent of input frequency and sampling rate.

3.3. Analysis of Harmonic Distortion

The system described by (5) is static and thus does not modify
phase. Instead, the particular sound qualities of diode-based VCAs
are largely due to gain-dependent distortion.
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Figure 4: Time domain waveforms (top) and relative errors (bottom)
comparing (5) to a SPICE simulation of Fig. 1 with R = 1kΩ and
IS = 2.520 nA, η = 1.755, and VT = 25.85mV corresponding
to a 1N4148 diode at 300K. The input is a 50mVPP 440Hz sine
sampled at 48 kHz. A is linearly swept from 0 to 1 over the run
duration. Trace y1 uses [9, (12)] to evaluate ω(), while y2 uses the
algorithm described in [20]. The DC offset has been removed from
the SPICE simulation trace.

The magnitude and sign of a given harmonic hn produced for
a sinusoidal input x = cos (2πft) follows from the Fourier series
expansion of y(x) and is given by

hn =
2

πα

∫ π

0

cos (nu) ω(α cos (u) + β) du (8)

for n ∈ N∗, such that y(x) = c +
∑

n≥1 hn cos (2πnft). An
exact analytical solution for hn cannot be expressed in terms of
elementary functions. The harmonic level plots shown in this work
were obtained by evaluating (8) numerically via the DCT using
the algorithm in [20] to evaluate ω(). One may also approximate
the integral analytically using one of the series expansions given
in [19] for those values of α and β which permit convergence.

Both α and β affect the amount of harmonic distortion intro-
duced by the model. Because the input signal x is always multiplied
by α, changing the input signal magnitude is equivalent to chang-
ing α by a corresponding amount; thus, we will frame the effects
of input signal magnitude solely in terms of α. When α ≈ 0,
y(x) ≈ Ax for all values of β, and thus the model is largely indis-
tinguishable from a perfect digital VCA. As |α| increases, harmonic
distortion increases in turn. The sign of α affects the signs of even
harmonics, but not their magnitude.

As β → +∞ (i.e., A approaches unity), the curve becomes
increasingly linear and total harmonic distortion decreases, even for
larger values of |α|. Conversely, as β → −∞ (i.e., A approaches
zero), the curve becomes less linear and the total harmonic dis-
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Figure 5: Magnitude of harmonics introduced by (5) when applied
to x = cos (2πft), relative to the input signal. The frequency
multiple n is indicated by the number of dots; odd harmonics are
purple and even harmonics are orange. Grey grid lines show 20 dB
per decade slopes.

tortion increases‡. This inverse relationship is somewhat counter-
intuitive compared to other waveshaping models, which typically
exhibit increased distortion with increased gain.

Fig. 5 shows the relative level of each harmonic multiple in-
troduced when (5) is applied to a sinusoidal input. The odd and
even harmonics produced by the model tend to cluster in lobes;
for some gain settings, even harmonics dominate (resulting in a
“warmer” sound), while at other settings, odd harmonics are more
pronounced (resulting in a more “metallic” sound). This lends
the model a dynamic and shifting timbre with the potential to add
auditory interest to synthesizers and effects.

‡A rigorous proof is beyond the scope of this paper, but the behavior can
be seen by observing that the extrinsic curvature κ of y(x)/y′(x), evaluated
at x = 0, decreases monotonically as β increases.
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Figure 6: RMS of output compared to input for a compensated
model combining (9) and (10), showing various values of γ. The
input is x = cos(t) sampled at 5 kHz for a duration of 1 s. Dashed
line indicates the ideal linear gain response.

4. IMPLEMENTATION CONSIDERATIONS

4.1. Signal Contribution to Effective Gain

When |α| is relatively large, the input signal can shift the operating
point away from β by a significant degree. This can cause the
effective gain, defined here as RMS{y}/RMS{x}, to differ from the
small-signal gain. This disparity is especially prevalent when αx >
0 due to the shape of (6). In this region, a significant portion of the
input signal can pass through the VCA even for values of A close to
zero; we refer to this phenomenon as gain parameter overestimation.
This behavior can be clearly seen in the third row of Fig. 5.

In applications where accurate gain tracking is required, we
suggest modifying (5) by subtracting some portion of α from β,

y⋆(x) = α−1ω(αx+ β − γ|α|)− α−1ω(β − γ|α|) (9)

where γ ∈ [0, 1] sets the amount of compensation to apply. The
optimal value for γ depends only on |α|; it approaches 0 as |α| → 0
and 1 as |α| → ∞, though we were unable to determine the exact
relationship between the two parameters.

4.2. Bias Parameter Magnitude

The expression (7) has non-removable singularities that prevent
the model from attaining zero or unity gain, as limA→0+ β(A) =
−∞ and limA→1− β(A) = +∞. This problem is further com-
pounded by floating point rounding errors: when |β| ≫ |α| and
x ∼ U(−1, 1), the expression αx + β introduces an average of
log2 |β| − log2 |α| + 2 bits of rounding error. Given that IEEE
754 single-precision floats carry 24 bits of significand precision,
rounding errors can quickly become audible as |β| increases. We
therefore seek to place constraints on the value of β. Because this
in turn limits the available range of A, (5) and (7) must be modified
to compensate. We may instead use

A⋆ = max(A,Amin) , (10a)

y⋆(x) =
A

A⋆

1 + ϵ

α

(
ω(αx+ β⋆)− ω(β⋆)

)
, (10b)

β⋆(A⋆) = ω−1

(
A⋆

1 + ϵ−A⋆

)
, (10c)
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where ϵ ≥ 0 and Amin ≥ 0 are small values. This allows for
A ∈ [0, 1]. The parameter ϵ moves the pole in (10c) outside the
range of A⋆, and Amin establishes the minimum gain effected by
the VCA model; when A < Amin, the output signal is linearly
scaled to compensate, which additionally mitigates gain param-
eter overestimation. These modifications impose the constraint
β⋆∈ [β⋆(Amin), ω

−1(ϵ−1)] while allowing for A ∈ [0, 1] without
significantly changing the model’s characteristics. The parameters
need not be large; in fact, setting ϵ = 0.02 and Amin = 0.001
limits β ∈ [−6.9, 53.9] and produced indistinguishable results in
informal listening tests.

Fig. 6 illustrates the gain characteristics of a compensated
model combining (9) and (10).

4.3. DC Blocking

Adding DC blocking filters to the VCA model’s input and output
is strongly recommended. Any DC offset present at the input
effectively contributes to β and changes the system’s gain in the
same manner as described in Sec. 4.1.

Because the Wright omega function is asymmetric, some DC
components are present at the output that are not completely re-
moved by the −α−1ω(β) term. Note that an output DC blocking
filter does not completely obviate the need for this term; without
it, rapid gain modulation can produce audible “thumping” at the
output that can pass through a DC blocking filter.

4.4. Antialiasing

The Wright omega function is nonlinear and thus can generate
harmonic components above a system’s Nyquist frequency. These
components appear in the output signal as aliasing distortion, which
is often undesirable.

Upsampling αx+ β before evaluating the nonlinearity greatly
reduces aliasing by raising the effective Nyquist frequency at the
expense of increased ω() evaluations per sample. Large values
of |α| introduce more distortion and therefore suggest the use of
higher oversampling factors. The degree of oversampling necessary
to render aliasing inaudible is relatively low; despite the magnitude
of harmonics relative to the output signal increasing as A → 0, the
absolute magnitude of each harmonic decreases.

The antiderivative antialiasing (ADAA) technique described
in [21] is particularly well-suited to this model, and may be applied
instead of or in conjunction with oversampling. This is due to the
property that antiderivatives of ω() are polynomial functions of ω()
itself. Namely,∫

ω(u) du =
1

2
ω2(u) + ω(u) + C ,

∫
uω(u) du =− 1

6
ω3(u) +

(
1

2
u− 3

4

)
ω2(u)

+ (u− 1)ω(u) + C .

Comparisons of the antialiasing methods described in this sec-
tion, as well as other methods using matched filters, may be found
on the companion page to this paper§.

§https://corianderpines.org/publications/
dafx2025_diode_vca/
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Figure 7: Analog circuit prototype for resistor-diode VCA obtained
by interchanging the diode and resistor in Fig. 1.

5. TOPOLOGICAL VARIATIONS

5.1. Quasi-Logarithmic Converter

A topological variation may be found by interchanging the diode
and resistor in Fig. 1 such that Vout is taken across the diode rather
than the resistor, as shown in Fig. 7. This circuit is often called a log-
arithmic converter [22], as its response approximates a logarithmic
curve for large input values.

An expression for Vout may be derived from (4) by observing
that the voltages across the diode and resistor must necessarily sum
to Vin; hence,

Vout = Vin − ηVT ω

(
Vin + Vctrl

ηVT
+ ω−1

(
ISR

ηVT

))
+ ISR .

(11)
By extension, we derive the DSP model for this topology by sub-
tracting (5) from x such that

y(x) = x− α−1ω(αx+ β) + α−1ω(β) , (12a)

A =
1

ω(β) + 1
, (12b)

β(A) = ω−1

(
1−A

A

)
, (12c)

where (12c) is defined on the open interval A ∈ (0, 1). This form
more readily demonstrates why the circuit in Fig. 7 is called a
logarithmic converter: ω(αx) + ln (ω(αx)) = αx by definition;
thus x − α−1ω(αx) = α−1 ln (ω(αx)) ≈ α−1 ln (αx) for large
positive values of αx. In contrast with ln (), (12a) is real and finite
for all x ∈ R.

The signal sweep and harmonic distortion introduced by (12a)
are shown in Column (a) of Fig. 8. Unlike (5) which approaches a
linear function as A → 1, this model’s response curve approaches
linearity as A → 0. This results in peak distortion near unity
gain, which rapidly decreases as the gain decreases; indeed, the
harmonics introduced by this model fall off at approximately 40 dB
per decade as the gain parameter approaches zero. By keeping the
gain parameter below some predetermined threshold and applying
sufficient make-up gain, distortion can be reduced until it is largely
inaudible. Additionally, the gain parameter overestimation problem
described in Sec. 4.1 is less pronounced in this model, occurring
when the gain parameter is near unity rather than near zero. For
these reasons, commercial diode-based VCAs sometimes prefer
designs that build on this topology [2, 5, 7].
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Figure 8: Topological variations from left to right: (a) Quasi-
Logarithmic Converter, Sec. 5.1; (b) Current-Controlled Bridge,
Sec. 5.2. Top row: Input signal sweeps of each model for various
values of β. Dashed lines indicate linear functions with equivalent
gain. Bottom row: relative harmonic levels introduced by each
model when applied to a sinusoidal input signal x = cos (2πft).
The frequency multiple is indicated by the number of dots; odd
harmonics are purple and even harmonics are orange. Grey grid
lines show 20 dB per decade slopes.

5.2. Current-Controlled Bridge

The circuit described in Sec. 5.1 can be altered to control the gain
using a control current rather than a control voltage. Two resistor-
diode VCAs may also be placed in parallel to construct a symmetric
bridge. The Dolby A301 Audio Noise Reduction System [5], a
multi-band companding processor released in 1966, utilized this
topology in its VCA sections, implementing a voltage-controlled
current source/sink using a pair of BJTs.

Fig. 9 depicts a simplified version of a current-controlled resistor-
diode bridge VCA. This circuit is described by the equations

Vin − Va

R1
+ IS exp

(
V+ − Va

ηVT

)
− IS − Ictrl = 0 , (13a)

Vin − Vb

R1
− IS exp

(
Vb − V−

ηVT

)
+ IS + Ictrl = 0 , (13b)

Vout =
Va + Vb

2
. (13c)

Without loss of generality, we impose the constraint V− =
−V+

¶. The Wright omega function can again be used to obtain

¶Unequal supply voltages V− ̸= −V+ apply a DC offset of 1/2V+ +
1/2V− to Vin, Vout, and IctrlR1, but do not otherwise alter the circuit’s
characteristics.

Vin

R1

Va

R2

Vout

R1

Vb

R2

Ictrl

V+

V−

Figure 9: Simplified circuit based on the VCA sections used in the
Dolby A301 Audio Noise Reduction System’s compressor modules.

explicit expressions for each node,

Va = Vin − IctrlR1 − ISR1

+ ηVT ω

(−Vin + IctrlR1 + V+

ηVT
+ ω−1

(
ISR1

ηVT

))
,

Vb = Vin + IctrlR1 + ISR1

− ηVT ω

(
Vin + IctrlR1 + V+

ηVT
+ ω−1

(
ISR1

ηVT

))
,

which we combine to obtain the solution

Vout = Vin

+
1

2
ηVT ω

(−Vin + IctrlR1 + V+

ηVT
+ ω−1

(
ISR1

ηVT

))
− 1

2
ηVT ω

(
Vin + IctrlR1 + V+

ηVT
+ ω−1

(
ISR1

ηVT

))
.

(15)
From this, we may observe that when all corresponding components
are matched, the IctrlR1 and ISR1 terms cancel completely and no
control current feedthrough is present at the output.

As in Sec. 3, we make a series of substitutions to (15):
α := (ηVT)

−1, β := (IctrlR1 + V+)/ηVT + ω−1(ISR1/ηVT), x :=
Vin, and y := Vout. We now arrive at the generalized DSP model

y(x) = x− 1

2
α−1ω(αx+ β) +

1

2
α−1ω(−αx+ β) . (16)

Perhaps unexpectedly, the small-signal gain and gain control
parameterization equations for (16) are identical to those in Sec. 5.1,
namely

A =
1

ω(β) + 1
, (12b revisited)

β(A) = ω−1

(
1−A

A

)
. (12c revisited)

The signal sweep and harmonic distortion introduced by this
model are shown in Column (b) of Fig. 8. Unlike the other topolo-
gies described in this paper, (16) is an odd function and thus sym-
metrical about x even when α is large; therefore, only odd harmon-
ics are present, and the total distortion produced by this model is
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significantly lower than by the other models for the same α value.
When A = 1/2 (i.e., β = 1), y(x) ≈ x/2 and the function is approx-
imately linear; relative harmonic distortion increases as A → 0 and
A → 1. For all finite α and β, limx→±∞ ∂y/∂x = 1/2.

6. FUTURE WORK

Possible next steps include characterizing how digital diode-based
VCA models behave when used as a subcomponent in effects such
as compressors, expanders, and dynamic filters. The model could
also be extended to behave like a four-quadrant multiplier for ring
modulation, as in [14]. In particular, the variable harmonic distor-
tion, signal gain contribution, and control parameter feedthrough
inherent in these models may have interesting and unexpected con-
sequences when present in the feedback path of a larger filter.

Additional diode-based VCA topologies beyond those dis-
cussed in this paper have been observed in audio hardware; these
present additional opportunities for virtual analog modelling.

This paper introduced a family of digital VCA models based
on fixed nonlinearities with variable operating points with the form

y(x) = α−1f(αx+ β)− α−1f(β) , (17a)

A := lim
α→0

∂y

∂x
= f ′(β) , (17b)

β(A) =
[
f ′]−1

(A) . (17c)

Another avenue of future study is found in adapting this model
to other variable gain electronic components such as transistors
and vacuum tube diodes, “omega-like” functions such as f(x) =
ln (1 + ex)||, and other nonlinearities used in waveshaping, e.g.,
f(x) = tanh−1(x) and f(x) = sinx.

7. CONCLUSIONS

In this work, we presented and analyzed a DSP model that emulates
a diode-based VCA. We derived closed-form equations for the
small signal gain and gain control parameter, and quantified the
degree of harmonic distortion. We also provided practical consider-
ations for real-time implementation, including methods to minimize
control feedthrough, avoid non-removable singularities, and reduce
aliasing. Finally, we introduced a family of topological variations
with different gain and distortion characteristics. The models pre-
sented are suitable for real-time applications and have a pleasing
musical effect. They may be used as standalone signal processors
or as subcomponents in larger audio effects.

Sound samples and supplementary materials are available on
this paper’s companion site**.
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